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Abstract

We study how to extend the use of the diffusion
model to answer the causal question from the
observational data under the existence of unmea-
sured confounders. In Pearl’s framework of us-
ing a Directed Acyclic Graph (DAG) to capture
the causal intervention, a Diffusion-based Causal
Model (DCM) was proposed incorporating the dif-
fusion model to answer the causal questions more
accurately, assuming that all of the confounders
are observed. However, unmeasured confounders
in practice exist, which hinders DCM from being
applicable. To alleviate this limitation of DCM,
we propose an extended model called Backdoor
Criterion based DCM (BDCM), whose idea is
rooted in the Backdoor criterion to find the vari-
ables in DAG to be included in the decoding pro-
cess of the diffusion model so that we can extend
DCM to the case with unmeasured confounders.
Synthetic data experiment demonstrates that our
proposed model captures the counterfactual dis-
tribution more precisely than DCM under the un-
measured confounders.

1. Introduction
Causal inference is the study of identifying the causal rela-
tionships between variables of one’s interest and developing
the estimator for the estimands, such as the Average Treat-
ment Effect (ATE), from the observational data. With ATE,
for instance, we can use observational data to determine the
personalized medicine (Sanchez et al., 2022b) that maxi-
mizes the outcome, such as recovery from a disease. There
are two mainstreams in causal inference: the Potential Out-
come (PO) framework (Imbens & Rubin, 2015) and the Di-
rected Acyclic Graph (DAG) framework (Pearl et al., 2016).
In the DAG framework, Chao et al. (2023) (Chao et al.,
2023) proposed the algorithm called the Diffusion-based
Causal Model (DCM) that allows us to sample from the tar-
get distribution of our interest, by which we can calculate the
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Figure 1. DAG with three nodes and edges and the corresponding
SCM with three exogenous and endogenous nodes

approximation of ATE, outperforming the state-of-the-art
algorithms (Sanchez-Martin et al., 2021) and (Khemakhem
et al., 2021). However, only under causal sufficiency can the
DCM sample from the target distribution, which requires the
complete observation of all the confounders, which often
does not hold in practice where confounders are the vari-
ables that affect both the cause and outcome variables of our
interest. For instance, we often cannot observe stress levels,
physical activities, mental health, sleep patterns, and genetic
factors. To overcome the limitation of DCM, we extend it
and propose a new algorithm to be able to estimate the ATE
even under the existence of the unmeasured confounders by
including the nodes that satisfy the backdoor criterion (Pearl
et al., 2016) in both training and sampling phases of the
algorithm, which tells us which variables we should adjust.
To illustrate the applicability of a new algorithm where un-
measured confounders exist, we conduct the synthetic data
experiment for both simple and complex underlying data-
generating processes. The experiment shows that our new
algorithm samples precisely from the ground truth target
distribution where DCM fails for both cases.

2. Background
We formulate the data-generating process, intervention,
and causal effect in Pearl’s (Pearl et al., 2016) framework.
Firstly, DAG is the main element of Pearl’s framework and
is defined as follows.

Definition 2.1 (Directed Acyclic Graph). DAG G =
(V, E) is a pair of the set of nodes V and the
set of edges E where V = {1, · · · , d} and E =
{(i, j) : ∃ edge from node i to j}. DAG expresses vari-
ables by nodes and causal relationships by edges.
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Figure 2. do operator where we intervened in the node X2 = x2

in SCM with three exogenous and endogenous nodes

DAG only represents the relationship between nodes on
which nodes affect which nodes. To quantify how the model
generates the variables in terms of distributions and func-
tions, we introduce a structural causal model (SCM). We
assume that we sample the observational data from the un-
derlying SCM.
Definition 2.2 (Structural Causal Model). Structural Causal
Model (SCM) M = (U ,V, f) is the tuple of the set of
exogenous variables U = {U1, · · · , Ud}, the set of endoge-
nous variables V = {X1, · · · , Xd}, and the set of structural
equations f = {f1, · · · , fd} such that for each i ∈ [d], the
endogenous variable satisfies Xi = fi(Pa(Xi), Ui) where
Pa(Xi) is the set of the parent nodes of Xi and d is the
number of endogenous or exogenous nodes.

Fig. 1 illustrates the examples of DAG G = (V, E) where
V = {1, 2, 3} and E = {(1, 2), (1, 3), (2, 3)} and SCM
M = (U ,V, f) with three endogenous and exogenous
nodes where U = {U1, U2, U3}, V = {X1, X2, X3}, and
f = {f1, f2, f3}.

In SCM, we assume that there exist unknown distributions
of exogenous variables. We generate n independent and
identically distributed samples from the distribution for each
exogenous variable, but we do not observe them. Then, we
observe endogenous variables according to the underlying
structural equation for each. Thus, the observational data is
X ∈ Rn×d where n is the number of samples and d is the
number of nodes

Only with the observational data X ∈ Rn×d are we not
sure about the parent nodes of each endogenous variable.
Such information can be defined by the topological order
as follows.
Definition 2.3 (Topological Order). Topological order π =
(π1, · · · , πd) is a permutation of d nodes in SCM such that
πi < πj ⇐⇒ Xj ∈ De(Xi) for all Xi, Xj ∈ V such that
i ̸= j where De(Xi) is the set of the descendant nodes of i.

The problem of finding the topological order given the ob-
servational data is called causal discovery (Spirtes et al.,
2000), (Glymour et al., 2019). As this problem is computa-
tionally intensive and NP-hard (Chickering, 1996), most of
the methods focus on the approximation of it. We assume

we know the topological order of endogenous variables in
SCM from which we get the observational data as we can
get the estimated topological order by using the algorithm
such as SCORE (Rolland et al., 2022) or DiffAN (Sanchez
et al., 2022a), which use the properties of the leaf nodes and
iteratively extract the leaf nodes to construct the topological
order from the observational data.

Furthermore, we introduce do-operator that represents the
intervention on SCMM as follows.

Definition 2.4 (do-operator). For any i ∈ [d], We define
do(Xi = xi) by setting the corresponding exogenous vari-
able to the intervened value Ui = xi and deleting all the
edges coming into Xi from the endogenous variables on
SCM.

Fig. 2 shows the example of the do-operator where we
intervene in the endogenous variable X2 to x2 on the SCM
in Fig. 1.

The following defines the average treatment effect (ATE),
one of the causal effects we are interested in, using the
do-operator.

Definition 2.5 (Average Treatment Effect). For all
Xi, Xj ∈ V in SCM such that i ̸= j, we define the ATE
of the variable (cause) Xi on the variable (outcome) Xj

when we compare two counterfactual situations Xi = xi

and Xi = 0 by

ATE(xi, 0) := E[xj | do(Xi = xi)]− E[xj | do(Xi = 0)]

=

∫
xj

xjν(Xj = xj | do(Xi = xi))dxj

−
∫
xj

xjν(Xj = xj | do(Xi = 0))dxj

where ν(Xj | do(Xi = xi)) is the probability density func-
tion of Xj after the surgery on the SCM by do operator
do(Xi = xi).

As we aim to figure out the causal effect of an arbitrary
node on an arbitrary node, our problem boils down to
how to approximately sample from the target distribution
ν(Xj | do(Xi = xi)) given observational data X ∈ Rn×d

and underlying DAG for all i, j ∈ [d] such that i ̸= j
shown in Fig. 3. Note that we can estimate the underlying
DAG by the topological order π and edge pruning algorithm
(Bühlmann et al., 2014) that uses the feature selection.

3. Existing Algorithm
We introduce a diffusion-based algorithm called Diffusion-
based Causal Model (DCM) proposed by Chao et al. (2023)
(Chao et al., 2023), that can sample from the target distri-
bution ν(Xj | do(Xi = xi)) more accurately than existing
state-of-the-art algorithms (Sanchez-Martin et al., 2021)
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Figure 3. Illustration of our problem: sampling from the target
distribution after the intervention on a node in the SCM given the
observational data and the underlying DAG

and (Khemakhem et al., 2021) under the following causal
sufficiency.

Assumption 3.1 (Causal Sufficiency). We say that the data-
generating process satisfies causal sufficiency if no unmea-
sured confounders exist.

DCM uses Denoising Diffusion Implicit Model (DDIM)
(Song et al., 2020), a more efficient sampling algorithm than
Denoising Diffusion Probabilistic Model (DDPM) (Sohl-
Dickstein et al., 2015) (Ho et al., 2020), which attained the
groundbreaking performance in generating image and audio
data (Kong et al., 2020), (Ramesh et al., 2022), (Saharia
et al., 2022). DCM trains the diffusion model at each node
to capture the characteristics of the exogenous nodes in
SCM. In the forward diffusion process for each endogenous
node, where we gradually add the isotropic Gaussian noise,
we obtain the standard Gaussian distribution. Then, in the
reverse diffusion process, we decode it by adding the Gaus-
sian distribution with a learned parameter θ to sample from
the target distribution. As (Luo, 2022) shows that learning
the parameter in the reverse diffusion process is equivalent
to learning how much noise we add at each step, we also
construct the neural network that captures how much noise
ϵ we should add according to the time t and the already
sampled values of the parent nodes X̂Pai where XPai is the
set of the parent nodes of Xi in SCMM. After the training,
we can sample from the target distribution. We sample the
root node Xi in SCM from the empirical distribution Ei.
For the intervened node Xi, we set it to the intervened value
γi. For other nodes Xi, we sample by the reverse diffusion
process Deci(Zi,Pa(Xi)) using the trained neural network
ϵθ with parent nodes Pa(Xi) and the corresponding proy
exogenous nodes Zi ∼ N (0, 1). Algorithms 1, 2, and 3
show the comprehensive procedure of decoding, training,
and sampling processes, respectively.

One of the crucial limitations of DCM (Chao et al., 2023)
is that we cannot cope with the situation where there exist
unmeasured confounders, which is often the case with the
data collection for business, public health and social science
where causal inference makes a significant contribution.

Algorithm 1 Deci(Zi, XPai) (Chao et al., 2023)
Input: Zi, XPai
Sample X̂T ∼ Zi

for t = T, · · · , 1 do

X̂t−1
i ←

√
αt−1

αt
X̂t

i − ϵiθ(X̂
t
i , XPai , t)

×

√
αt−1(1− αt)

αt
−

√
1− αt−1


end for
Output: X̂0

i

Algorithm 2 DCM Training (Chao et al., 2023)
Input: target distribution ν, scale factors {αt}Tt=1, DAG
G whose node i is represented by Xi

while not converge do
Sample X0 ∼ ν
for i = 1, · · · , d do
t ∼ Unif[{1, · · · , T}]
ϵ ∼ N (0, 1)
Update the parameter of the node i’s diffusion model
ϵiθ by minimization of the following loss function by
Adam optimizer∥∥ϵ− ϵiθ

(√
αtX

0
i +
√
1− αtϵ,X

0
Pai , t

)∥∥2
2

end for
end while

4. Proposed Algorithm
4.1. Backdoor Diffusion-based Causal Model

To overcome the problem of DCM and use the observational
data as much as possible, we introduce the novel Backdoor
Criterion-based DCM (BDCM) algorithm inspired by the
backdoor criterion proposed by Pearl (Pearl et al., 2016).
To define the backdoor criterion, we introduce the notion of
blocking a path in DAG.

Definition 4.1 (Block a Path). We say that the node Z
blocks a path P if the path P includes a chain L→ Z → R,
or a folk L← Z → R where L and R are the nodes in the
path P .

Then, using Definition 4.1, we define backdoor criterion as
follows.

Definition 4.2 (Backdoor Criterion). A set of variables B
satisfies backdoor criterion (Pearl et al., 2016) for tuple
(X,Y ) in DAG G if no node in B is a descendant of X
and B blocks all paths between X (cause) and Y (outcome)

3
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Algorithm 3 DCM Sampling (Chao et al., 2023)
t

Input: Intervened node j with value γj , noise Zi ∼
N (0, 1) for all i ∈ [d]
for i = 1, · · · , d do

if i is a root node then
X̂i ∼ Ei

else if i = j then
X̂i ← γi

else
X̂i ← Deci

(
Zi, X̂Pai

)
end if

end for
return X̂ =

(
X̂1, · · · , X̂d

)

which contains an arrow into X .

If unmeasured confounders exist, then the Backdoor cri-
terion tells us which variable to adjust concerning tuple
(X,Y ). Then, the idea of Backdoor DCM is that for each
node Xi in SCM, instead of having the parents XPai and
corresponding exogenous nodes Zi as the input of the de-
coder of the diffusion model, we include the nodes which
meet the backdoor criterion XBi

and the corresponding
exogenous nodes Zi and also include the intervened node
Xj if it is the child of the intervened node (Xj ∈ XPai).
Furthermore, we change the training process accordingly.
As the parent nodes of the outcome node always satisfy
the backdoor criterion under Assumption 3.1 (Pearl et al.,
2016), including the nodes that meet the backdoor criterion
instead of the parent nodes in the decoder of BDCM is the
generalized algorithm of DCM. Algorithms 4 and 5 show
the training and sampling process of BDCM. Then, we have
the following conjecture.

Conjecture 4.3 (Applicability of BDCM). Suppose sets
of nodes satisfy the backdoor criterion for the intervened
node and other nodes. In that case, we can generalize DCM
to BDCM to sample from the target distribution even if
Assumption 3.1 is violated.

4.2. Experiment

To show that BDCM precisely samples from the target distri-
bution where we cannot use DCM, we conduct an empirical
analysis with the following settings where causal sufficiency
does not hold. Python code for the experiment is available
in https://github.com/tatsu432/BDCM.

Fig. 4 and Fig. 5 show the SCMsM1 andM2 respectively
that do not satisfy Assumption 3.1 where X1 and X4 in Fig.
4 and X2 in Fig. 5 are the unobserved nodes. Note that we
did not show the exogenous nodes in the figures for clarity.
Examples 4.4 and 4.5 show the concrete structural equations

Algorithm 4 BDCM Training
Input: target distribution ν, scale factors {αt}Tt=1, DAG
G whose node i is represented by Xi and intervened node
j with intervened value γj
while not converge do

Sample X0 ∼ ν
for i = 1, · · · , d do
t ∼ Unif[{1, · · · , T}]
ϵ ∼ N (0, 1)
Update the parameter of the node i’s diffusion model
ϵiθ by minimization of the following loss function
depending on the nodes.
if Xj ∈ XPai then

∥∥ϵ− ϵiθ
(√

αtX
0
i +
√
1− αtϵ,X

0
Bi
, Xj , t

)∥∥2
2

else

∥∥ϵ− ϵiθ
(√

αtX
0
i +
√
1− αtϵ,X

0
Bi
, t
)∥∥2

2

end if
end for

end while

forM1 and Examples 4.6 and 4.7 forM2. We create simple
and complex structural equations for both cases. The simple
cases are the additive noise models (ANM) (Shimizu et al.,
2006), (Hoyer et al., 2008), (Peters et al., 2014), (Bühlmann
et al., 2014) whereas the complex ones are not ANM.
Example 4.4. We define the set of simple structural equa-
tions f = {fi}i∈[5] for SCMM1 in Fig. 4 as follows.

X1 = f1(U1) = U1

X2 = f2(X1, U2) = X2
1 + U2

X3 = f3(X1, U3) = 2X1 + U3

X4 = f4(X3, U4) = X3 + U4

X5 = f5(X2, X4, U5) = X2 + 2X4 + U5

Example 4.5. We define the set of complex structural equa-
tions f = {fi}i∈[5] for SCMM1 in Fig. 4 as follows.

X1 = f1(U1) = U1

X2 = f2(X1, U2) =

√
|X1|(|U2|+ 0.1)

2
+ |X1|+

U2

5

X3 = f3(X1, U3) =
1

1 + (|U3|+ 0.1) exp(−X2)

X4 = f4(X3, U4) = X3 +X3U4 + U4

X5 = f5(X2, X4, U5) = X2 +X4 +X2X4U5 + U5

4
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Algorithm 5 BDCM Sampling
Input: Intervened node j with value γj , noise Zi ∼
N (0, 1) for all i ∈ [d]
for i = 1, · · · , d do

if i = j then
X̂i ← γi

else if i is a root node then
X̂i ∼ Ei

else if Xj ∈ XPai then
X̂i ← Deci

(
Zi, X̂Bi , Xj

)
else
X̂i ← Deci

(
Zi, X̂Bi

)
end if

end for
return X̂ =

(
X̂1, · · · , X̂d

)

Example 4.6. We define the set of simple structural equa-
tions f = {fi}i∈[6] for SCMM2 in Fig. 5 as follows.

X1 = f1(U1) = U1

X2 = f2(X1, U2) = X2
1 + U2

X3 = f3(X2, U3) = X2 + U3

X4 = f4(X3, U4) = X3
3 +X3 + U4

X5 = f5(X3, U5) = X2
3 + 0.1 + U5

X6 = f6(X2, X4, X5, U6) = X2X4 +X2X5 +X4X5 + U6

Example 4.7. We define the set of complex structural equa-
tions f = {fi}i∈[6] for SCMM2 in Fig. 5 as follows.

X1 = f1(U1) = U1

X2 = f2(X1, U2) =

√
|X1|(|U2|+ 0.1)

2
+ |X1|+

U2

5

X3 = f3(X2, U3) =
1

1 + (|U3|+ 0.1) exp(−X2)

X4 = f4(X3, U4) =
U4(|X3|+ 0.3)

5
+ U4

X5 = f5(X3, U5) =
1√

|U5X3|+ 0.1
+ U5

X6 = f6(X2, X4, X5, U6)

= X2
2X4 +X2X5 +X5X6 +X2U6

For Examples 4.4, 4.5, 4.6, and 4.7, we sample exogenous
nodes Ui from standard normal distribution N (0, 1) for all
i ∈ [5] inM1 and all i ∈ [6] inM2. We normalized each
endogenous variable as (Chao et al., 2023) did.

For both Examples 4.4 and 4.5 for Fig. 4, we aim to sample
correctly from the target distribution ν(X5|do(X2 = x2))

Figure 4. SCM M1 where the unobserved confounders X1 and
X4 exist with five exogenous and endogenous nodes where we
intervene in the node X2 = x2

Figure 5. SCM M2 where the unobserved confounder X2 exists
with six exogenous and endogenous nodes where we intervene in
the node X4 = x4

where X2 is the cause, and X5 is the outcome. For both
DCM and BDCM, we set the intervened node X2 to inter-
vened value x2 and sample X3 from the empirical distri-
bution E3. For the node of our interest X5, DCM takes
X̂2 as the input for the decoder Dec5(Z5, X̂2) whereas
BDCM takes X̂2 and X̂3 as the input for the decoder
Dec5(Z5, X̂2, X̂3).

For both Examples 4.6 and 4.7 for Fig. 5, we aim to sample
correctly from the target distribution ν(X6|do(X4 = x4))
where X4 is the cause, and X6 is the outcome. For both
DCM and BDCM, we set the intervened node X4 to in-
tervened value x4, sample X1 and X3 from the empiri-
cal distribution E1 and E3 respectively, and sample X5 by
the decoder Dec5(Z5, X̂3). For the node of our interest
X6, DCM takes X̂4 and X̂5 as the inputs for the decoder
Dec6(Z6, X̂4, X̂5) whereas BDCM takes X̂3 and X̂4 as the
inputs for the decoder Dec6(Z6, X̂3, X̂4).

For parameters in the algorithm, we set them to the fol-
lowing values, mostly the same as (Chao et al., 2023).
For the noise schedule βt and αt, we set them to βt =(
0.1− 10−4

)
t−1
T−1 + 10−4 and αt =

∏t
i=1(1− βt) where

we set T = 100. For the neural networks, we set the epochs
to 500, batch size to 64, and learning rate to 10−4 where
each neural network consists of three hidden layers whose
numbers of nodes are 128, 256, and 256 for the first, sec-
ond and third layers, respectively. We extract 500 samples
via DCM and BDCM, where we train them with 1000 sam-
ples. We calculate the Maximum Mean Discrepancy (MMD)
(Gretton et al., 2012) between the empirical distributions
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Table 1. Average ± standard deviation of MMD (×10−3) of DCM
and BDCM compared to the true target distribution in Examples
4.4, 4.5, 4.6, 4.7, A.1, A.2, A.3, A.4, A.5, A.6

BDCM (ours) DCM

SCMM1
Ex. 4.4 1.24± 0.744 1.79± 1.54
Ex. 4.5 1.04± 0.835 2.34± 2.17

SCMM2
Ex. 4.6 5.08± 2.51 5.07± 2.17
Ex. 4.7 1.55± 1.91 2.89± 2.08

SCMM3
Ex.A.1 0.741± 0.68 1.14± 1.26
Ex.A.2 1.51± 1.43 1.8± 1.55

SCMM4
Ex. A.3 1.69± 1.49 2.12± 1.34
Ex. A.4 1.46± 1.11 2.38± 1.81

SCMM5
Ex. A.5 0.638± 0.586 0.747± 0.575
Ex. A.6 1.29± 0.938 1.41± 0.591

obtained from the algorithms and the ground truth target for
both DCM and BDCM. Note that the lower MMD is, the
closer the empirical distributions are, so the algorithm is
more precise. We set the intervened values to ten different
values sampled randomly from Unif(−3, 3). We also con-
duct the simulation for five different seeds. Then, We output
the average and standard deviation of MMDs.

Table 1 shows the results of the experiments. Table 1 demon-
strates that BDCM output a more precise distribution than
DCM, where unmeasured confounders exist for Examples
4.4, 4.5, 4.7. For Example 4.6, BDCM is almost as accurate
as DCM. For both SCMsM1 andM2, the more complex
the structural equations become in SCM, the clear the dif-
ference in the performance between DCM and BDCM is.
For SCMM1 in Fig. 4, BDCM successfully considers the
backdoor path X2 ← X1 → X3 → X4 → X5 by including
the node X3 that blocks the backdoor path in the decoder
of the outcome meanwhile DCM does not consider this
path when we sample the outcome X5 where we intervene
in the node X2, which creates the bias. Furthermore, for
SCMM2 in Fig. 5, BDCM carefully chooses the nodes
X3 and X4 that block all the backdoor paths concerning
the pair of the cause and outcome nodes as the input for
the decoder of the outcome X6 of our interest. In contrast,
DCM takes the parent nodes of the outcome we observe
X4 and X5 without considering one of the backdoor paths:
X4 ← X3 ← X2 → X6, which incurs the bias in the
sample by DCM.

Furthermore, Fig. 6 and Fig. 11 show ones of the em-
pirical distributions sampled by DCM, BDCM, and target
distribution for SCMs M1 and M2 where the structural
equations are complex. The blue histograms are the ground

Figure 6. Empirical distributions of the X5 sampled from DCM
(left) and BDCM (right) compared to the ground-truth target distri-
bution where we intervened in the node X2 = 0.2834 in Example
4.4

Figure 7. Empirical distributions of the X6 sampled from DCM
(left) and BDCM (right) compared to the ground-truth target distri-
bution where we intervened in the node X4 = −1.482 in Example
4.6

truth distribution we want to sample from, whereas the red
histograms are the outputs of the DCM (left) and BDCM
(right). From Fig. 6 and Fig. 7, we can see that BDCM
can sample from the target distribution ν(X5|do(X2 = x2))
in M1 and ν(X6|do(X4 = x4)) in M2 precisely where
unmeasured confounders exist whereas DCM fails to do so.

5. Conclusion and Future Work
We extended the Diffusion-based causal Model (DCM) pro-
posed by (Chao et al., 2023) to the case where unmea-
sured confounders exist. We proposed Backdoor Criterion-
based DCM (BDCM) that can consider the unobserved con-
founders by including the nodes that meet the backdoor
criterion (Pearl et al., 2016). Synthetic data experiment
demonstrates that BDCM can precisely sample from the
target distribution of our interest where DCM fails to do so.

For future work, one of the intriguing topics would be to

6
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derive the convergence guarantee of BDCM. Implementing
the comprehensive algorithm of BDCM in Python would
also be interesting. Moreover, it would be intriguing to gen-
eralize BDCM using the Front-door criterion (Pearl et al.,
2016), another criterion to adjust the nodes where unob-
served confounders exist.
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Figure 8. SCM M3 where the unobserved confounder X1 exists with seven exogenous and endogenous nodes where we intervene in the
node X6 = x6

A. Details of Synthetic Data Experiment
Example A.1. We define the set of simple structural equations f = {fi}i∈[7] for SCMM3 in Fig. 8 as follows.

X1 = f1(U1) = U1

X2 = f2(X1, U2) = X2
1 + U2

X3 = f3(X1, U3) = X1 + U3

X4 = f4(X1, U4) = X3
1 +X1 + U4

X5 = f5(X3, U5) = X2
3 + 0.1 + U5

X6 = f6(X2, X4, U6) = X2X4 + U6

X7 = f7(X1, X5, X6, U7) = X1X5 +X2
6 +X1X6 + U7

Example A.2. We define the set of complex structural equations f = {fi}i∈[7] for SCMM3 in Fig. 8 as follows.

X1 = f1(U1) = U1

X2 = f2(X1, U2) =

√
|X1|(|U2|+ 0.1)

2
+ |X1|+

U2

5

X3 = f3(X1, U3) =
1

1 + (|U3|+ 0.1) exp(−X1)

X4 = f4(X1, U4) =
U4(|X3|+ 0.3)

5
+ U4

X5 = f5(X3, U5) =
1√

|U5X3|+ 0.1
+ U5

X6 = f6(X2, X4, U6)

= X2
2X4 +X2X4 +X2U6

X7 = f7(X1, X5, X6, U7) =

= X2
1X5 +X1X6 +X1X5U7
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Figure 9. SCM M4 where the unobserved confounders X1, X2, X5, and X6 exist with five exogenous and endogenous nodes where we
intervene in the node X9 = x9

Example A.3. We define the set of simple structural equations f = {fi}i∈[10] for SCMM4 in Fig. 9 as follows.

X1 = f1(U1) = U1

X2 = f2(U2) = U2

X3 = f3(X1, U3) = X1 + U3

X4 = f4(X2, U4) = −X3
2 +X2 + U4

X5 = f5(X3, U5) = X2
3 + 0.1 + U5

X6 = f6(X4, U6) = X2
4 +X4 + U6

X7 = f7(X3, U7) = −X2
3 +X3 + U7

X8 = f8(X4, U8) = 3X4 + 0.1 + U8

X9 = f9(X5, X8, U9) = X5X8 +X5 +X8 + U9

X10 = f10(X6, X7, X9, U10) = X6X7X9 +X6X7 + U10
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Figure 10. SCM M5 where the unobserved confounders X1, X3, X4, X5, X7, and X8 exist with five exogenous and endogenous nodes
where we intervene in the node X9 = x9

Example A.4. We define the set of complex structural equations f = {fi}i∈[10] for SCMM4 in Fig. 9 as follows.

X1 = f1(U1) = U1

X2 = f2(U2) = U2

X3 = f3(X1, U3) =

√
|X1|(|U3|+ 0.1)

2
+ |X1|+

U3

5

X4 = f4(X2, U4) =
U4(|X2|+ 0.3)

5
+ U4

X5 = f5(X3, U5) = −
1

1 + (|U5|+ 0.1) exp(−X3)

X6 = f6(X4, U6) =
U6(|X4|+ 0.3)

5
+ U6

X7 = f7(X3, U7) =

√
|X3|(|U7|+ 0.1)

2
+ |X3|+

U7

5
X8 = f8(X4, U8) = 3X4 + 0.1 + U8

X9 = f9(X5, X8, U9) = X2
5X8 +X5 +X8 + U9

X10 = f10(X6, X7, X9, U10) = X2
6X7X9 +X6X7 + U10
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Example A.5. We define the set of simple structural equations f = {fi}i∈[11] for SCMM5 in Fig. 10 as follows.

X1 = f1(U1) = U1

X2 = f2(X1, U2) = −X1 + U2

X3 = f3(X2, U3) = X2 + 0.1 + U3

X4 = f4(X2, U4) = −X2 + 0.1 + U4

X5 = f5(X1, U5) = 1.3X1 +X1U5 + U5

X6 = f6(X5, U6) = −1.2(X5 + 0.1) +X5 + U6

X7 = f7(X6, U7) = −X2
6 +X6 + U7

X8 = f8(X6, U8) = 3X6 + 0.1 + U8

X9 = f9(X1, X6, U9) = X1X5 +X1 −X2
5 + 0.1 + U9

X10 = f10(X9, U10) = X2
9 + U10

X11 = f11(X3, X4, X7, X8, X9, X10, U11)

= X3X4 +X7X8 +X9X10 +X3X9 −X7X10 − 0.1

Example A.6. We define the set of complex structural equations f = {fi}i∈[11] for SCMM5 in Fig. 10 as follows.

X1 = f1(U1) = U1

X2 = f2(X1, U2) = X1(U2 + 0.1)

X3 = f3(X2, U3) =

√
|X2|(|U3|+ 0.1)

2
+ |X2|+

U3

5

X4 = f4(X2, U4) = X2 +
U4 + 0.1

2
X2

X5 = f5(X1, U5) = −
1

1 + (|U5|+ 0.1) exp(−X1)

X6 = f6(X5, U6) =
U6(|X5|+ 0.3)

5
+ U6

X7 = f7(X6, U7) = X6U7 + |X6 + 0.01||U7|
X8 = f8(X6, U8) = 3X6 + 0.1 + U8

X9 = f9(X1, X6, U9) = X3
5X8 +X5 +X8 + U9

X10 = f10(X9, U10) = X9U10 + (U10 + 0.1)2

X11 = f11(X3, X4, X7, X8, X9, X10, U11)

= X3(X8 − 0.1) +X9X10 +X3X9 −X7X10 +X3X8

−X4X9 +X9X10

B. Additional Result of Synthetic Data Experiment
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Figure 11. Empirical distributions of the X5 sampled from DCM (left) and BDCM (right) compared to the ground-truth target distribution
where we intervened in the node X2 = 0.298 in Example 4.5

Figure 12. Empirical distributions of the X6 sampled from DCM (left) and BDCM (right) compared to the ground-truth target distribution
where we intervened in the node X4 = 1.289 in Example 4.7

Figure 13. Empirical distributions of the X7 sampled from DCM (left) and BDCM (right) compared to the ground-truth target distribution
where we intervened in the node X6 = −1.757 in Example A.1
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Figure 14. Empirical distributions of the X7 sampled from DCM (left) and BDCM (right) compared to the ground-truth target distribution
where we intervened in the node X6 = −2.691 in Example A.2

Figure 15. Empirical distributions of the X10 sampled from DCM (left) and BDCM (right) compared to the ground-truth target distribution
where we intervened in the node X9 = −2.119 in Example A.3

Figure 16. Empirical distributions of the X10 sampled from DCM (left) and BDCM (right) compared to the ground-truth target distribution
where we intervened in the node X9 = 0.06497 in Example A.4
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Figure 17. Empirical distributions of the X11 sampled from DCM (left) and BDCM (right) compared to the ground-truth target distribution
where we intervened in the node X9 = 0.7156 in Example A.5

Figure 18. Empirical distributions of the X11 sampled from DCM (left) and BDCM (right) compared to the ground-truth target distribution
where we intervened in the node X9 = 2.378 in Example A.6
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